杏彩体育唯一官网:35000+字!这是全知乎写半导体产业链最全面的文
芯片承载着人类最先进的科技。如今中国已成为芯片设计强国,但在芯片制造上却处处被卡,芯片制造究竟难在哪里?
时至今日,芯片已形成一套非常成熟专精的制造流程[1],它并非简单地一步到位,而是分为存在一定时间间隔和空间次序的多个阶段[2]。大体来说,芯片制造分为晶圆加工制造、前道工艺(芯片加工)及后道工艺(封装测试)三大环节,我国主要集中切入晶圆加工制造、后道封装测试两个环节,前道工艺大部分高端设备和材料基本均处于空白状态,所以高端芯片往往需要进口。
若想获得一颗芯片,要先将石英砂做成薄薄的晶圆片(或者说衬底),再进行后续加工,最后切割为芯片。
因此,晶圆加工制造是半导体产业最上游、最基础的行业,又分为硅的初步纯化、单晶硅的制造以及晶圆制造三个子产业。
晶圆与威化饼干的英文都是wafer,这并非巧合, 打个比方来说,生产晶圆就像生产薄脆饼干,将面粉过筛,再与调料和水混合,经过搅拌成面团后,辊印成型成饼胚,再切割而成。晶圆制造也是同理,只不过,晶圆制造对原材料和工艺的要求极为严苛和复杂。
由于硅在地壳中占比达到25.8%,储量丰富且易于获取,因此硅基半导体是产量最大、应用最广的半导体材料。但并非所有硅都能做芯片,芯片制程工艺的尺度已达到纳米级,任何细微的杂质都会影响芯片正常工作,因此芯片制造中使用的硅是纯度达到99.9999999%~99.999999999%(9~11个9)的高纯多晶硅。
根据工艺,晶圆可粗略地分为抛光片、外延片、SOI片三大类。无论做成什么样的晶圆,其原点都是抛光片,因为类型晶圆均是在抛光片基础上二次加工的产物,比如在抛光片基础上进行退火处理就变为退火片,可拥有非常繁杂的分支。
根据直径,晶圆又分为2英寸(50mm)、3英寸(75mm)、4英寸(100mm)、5英寸(125mm)、6英寸(150mm)、8英寸(200mm)与 12英寸(300mm)等规格。
晶圆尺寸越大,每片晶圆可制造芯片数量就越多,单位芯片成本就越低。就像一张饼,饼越大,就能切出来越多同样大小的小块。
此外,在晶圆上切割芯片,一些边缘区域无法利用,想象一下,在圆上切方,边缘不可能切出完整的方形。无论用哪种晶圆生产,芯片尺寸规格都已固定,因此晶圆尺寸越大,晶圆边缘损失也会越小,大尺寸晶圆可进一步降低芯片成本。
那么,既然圆形的晶圆边缘有这么多区域无法利用,为什么不做成“晶方”?其实科学家并不是没有想过这个问题,而是受制于技术限制,成为历史遗留问题。
首先,单晶生长的硅棒是圆柱形,切割为薄片后即为圆形;其次,圆柱形的单晶硅锭更便于运输,以免因磕碰导致材料损耗;另外,圆形物体便于后续步骤的操作;最后,即便制作成晶方,一些边缘仍然不可利用,计算表明,圆形边缘比方形浪费更少。[8]
以8英寸与12英寸硅抛光片为例,在同样工艺条件下,12英寸晶圆可使用面积超过8英寸晶圆两倍以上,可使用率(衡量单位晶圆可生产芯片数量的指标)是8英寸硅片的2.5倍左右。[6]
当然,晶圆尺寸越大,就越难造,对生产技术、设备、材料、工艺要求就越多。具体来说,关键技术指标包括局部平整度、边缘局部平整度、纳米形貌、氧含量、高度径向二阶导数等,而先进制程对晶圆翘曲度、弯曲度、电阻率、表面金属残余量等参数指标有更高要求。
不只有硅能做成晶圆,目前,半导体材料已经发展到。第一代半导体材料以Si(硅)、Ge(锗)为代表,第二代半导体材料以GaAs(砷化镓)、InP(磷化铟)为代表,第三代半导体材料以GaN(氮化镓)、SiC(碳化硅)为代表,半导体材料以氮化铝(AlN)、氧化镓(Ga2O3)、金刚石(C)为代表。
纵观全球硅片市场,主要由国际厂商占据,市场集中度高,2021年全球硅片市场CR5为94%,排名前五厂商分别为日本信越化学(Shin-Etsu)、 日本胜高(SUMCO)、中国环球晶圆(Global Wafers)、德国世创(Siltronic)、 韩国鲜京矽特隆(SK Siltron)。[9]
反观国内方面,技术薄弱、业务规模小、集中度较低,产品多以8英寸及以下为主,国内半导体硅片企业主要包括沪硅产业、中环股份、立昂微、中晶科技、有研硅、麦斯克等,单一厂商市场占有率均不超过10%,且以8英寸及以下尺寸硅片为主。12英寸晶圆是近两年中国产业重点:比如,粤芯半导体是专注于模拟芯片领域和进入全面量产的12英寸芯片制造企业,计划总投资370亿元[10];再如,增芯科技月加工2万片12英寸智能传感器晶圆量产线]
从数据上来看,国产硅片市场规模2019年~2021年连续超过10亿美元,2021年达16.56亿美元,同比增长24.04%,预计2022年可达19.22亿美元。[12]
从全球第二代半导体(GaAs、InP)衬底和第三代半导体(GaN、SiC)衬底情况来看,国内已拥有大量相关企业,但整体产能规模与国际存在差距。
“这里好像我想象中的天堂……只不过有更多的机器人。”这是一位专家对于半导体制造工厂的评价。[14]
首先,有设备才能谈制造,在晶圆厂资本开支中,晶圆加工设备的资本开支也最大,占比为70%~80%。[15]
芯片生产过程中,有成千上万台工艺设备在同时运行,可以说,造设备难,让这些设备有秩序地生产起来更难。
芯片前期工艺包括光刻、干蚀刻、湿蚀刻、化学气相沉积、物理气相沉积、等离子冲洗、湿洗、热处理、电镀处理、化学表面处理和机械表面处理等,其中多个工艺会重复使用,非常复杂。
每个前期工艺都对应着相应设备,包括光刻机、涂胶显影机、刻蚀机、薄膜沉积设备、离子注入设备、热处理设备(氧化退火设备)、化学机械平摊(CMP)设备、清洗设备、过程检测设备等。
前期加工中,设备主要围绕制程工艺选型,也就是时常被提起的28nm、14nm、10nm、7nm、4nm、3nm……制程越小,制造越困难,对设备要求也越高。目前,28nm是行业分水岭,比28nm更先进的是先进制程,反之则是成熟制程。
在国际设备和系统路线图(IRDS)中,全面地反应了各制程节点所需系统级新技术,也就是说,未来几年内最先进制程需要用到什么设备也已被决定,而IRDS也会伴随制程升级而不断更新版本。
从价值分量上来看,光刻、刻蚀和薄膜沉积是前期加工中最主要三个环节,2021年光刻机、刻蚀机和薄膜沉积设备(含CVD、ALD、PVD)投资占比分别为20%、25%和22%,合计占比超设备总支出的60%。[17]
以下,果壳硬科技将对光刻机、涂胶显影机、刻蚀机、薄膜沉积设备、热处理设备(氧化退火设备)、离子注入设备、化学机械平摊(CMP)设备、清洗设备、过程检测设备几类价值分量最高的九种设备进行详细剖析。
光刻机是芯片制造中最庞大、最精密复杂、难度最大、价格最昂贵的设备,光刻成本占芯片总制造成本的三分之一,耗费时间约占整个硅片生产时间的40%~60%,而它也决定了芯片上晶体管能做多小。[19]
光刻设备是一种投影曝光系统,由紫外光源、光学镜片、对准系统等部件组装而成[20],其原理是将光掩模版(Mask)上设计好的集成电路图形(宏观)通过光线曝光印制到硅衬底光感材料(微观)上,实现图形转移。其中,光掩模相当于是相机底片,它要比芯片大上许多,也是通过光刻而来,不过通常采用无掩模直写光刻制造。
光刻的思想来源自于印刷技术,不同的是,印刷通过墨水在纸上的光反射率变化记录信息,光刻则采用光与光敏物质的光化学反应实现对比度变化[21]。打个比方来说,光刻机就是一种巨型单反相机,能够将光掩模版上图形缩小几百万倍,并通过光化学反应缩小转印到晶圆上。[22]
光刻技术先后经历接触式光刻、接近式光刻、全硅片扫描投影式光刻、分步重复投影式光刻到目前的步进扫描投影式[23],而光源经历了五次波长迭代:从最初紫外波段的高压放电汞灯g-line(436 nm)到 i-line(365 nm),发展到深紫外(DUV)波段的准分子激光器KrF(248 nm)以及 ArF(193 nm),再到最先进的13.5nm极紫外光(EUV)。[24]
为什么光刻机那么难造,一个挑战是进一步提升紫外光刻机性能研制难度高、造价高昂,从第一代光刻机到最先进的第五代光刻机,光源波长已从436nm缩短至13.5nm,除了难以产生光源,光束传输中极紫外光的衰减和光学元件表面粗糙控制都是极大难题;另一个挑战是芯片二维密度无限制提高必然会遇到量子极限,芯片两条线上电子的运行规律的前提是不相互干扰,而当硅芯片密度在物理尺度上缩小至1nm以下时,将会受到干扰而不再按照经典电子学规律运动,这无疑遭受巨大挑战。[25]
不止如此,在良率压力下,还要保证芯片足够便宜[26]。比如说,英特尔一颗CPU设计文件普遍在10GB以上,而阿斯麦(ASML)的NXT:2050i每小时可曝光295片300mm(12英寸)晶圆[24],Intel Ice Lake系列CPU单12英寸晶圆能切割出大约485颗芯片,这样情况下每小时极限能够曝光14. 3万颗芯片,这样的制造能力才能够将单颗CPU成本降至大众能承受的几十到上千美元。[25]
计算光刻:实际生产中很难让每次光刻模式都完全正确,每一次光刻过程中都可能会发生颗粒干扰、折射或物理/化学缺陷,为了得到确切图案,就需要通过将算法模型与系统和测试晶圆数据相结合,这个过程被称作计算光刻;[27]
对焦性能:光刻机中核心部件就是镜头,这并非一般镜头,而是高至2m、直径1m的庞大镜头,这些镜头的对焦性能是成像质量和产品良率的关键,随着芯片线宽不断缩小,加之二次成像(DP)光刻工艺应用越来越多,对光刻机对焦性能要求越来越严苛;[28]
工艺优化:制程节点每前进一步,都会伴随大量工艺优化,比如说,制程工艺从20nm/16nm/14nm开始,设计规则周期已小于光刻机分辨率极限,此时光刻机开始采用双重或多重曝光技术、光源掩模协同优化、负显影工艺等工艺;浸没式光刻技术虽然支持了45nm/40nm、32 nm/28nm、20nm/16nm/14nm、10nm和7nm五个主要技术节点[29],但从5nm开始,到3nm、2.1nm甚至1nm,大多数中后段层次和前段的鳍和栅极的剪切层次都开始采用极紫外光刻工艺实现。[30]
光刻机在半导体设备价值链中占比高达20%,目前,业界主要光刻机公司,分别是荷兰ASML(阿斯麦)、日本Nikon(尼康)、日本Canon(佳能)。[22]
市场方面,ASML、Nikon、Canon三家基本垄断市场,2022年ASML出货量占据全球出货量的82%,Canon占10%,Nikon占8%。其中,ASML光刻机种类齐全,是全球唯一能够生产EUV光刻机的公司,目前最小制程达到3nm;Nikon集中于DUV光刻机,也可生产浸没式光刻机;Canon的产品则集中在中低端。[31]
从具体数据来看,2022年,ASML、Nikon、Canon三家集成电路用光刻机总出货量为551台,较2021年的478台增长15%,EUV、ArFi、ArF三个高端机型共出货157台,较2021年的152台增长约3%。此外,EUV光刻机ASML市占率达100%,ArFi光刻机ASML市占率达95%以上,ArF光刻机ASML市占率达87%以上,KrF光刻机ASML市占率达72%以。